GRID LRT Documentation
Release 0.2.0

Alexandar Mechev

Oct 05, 2018

Contents:

1 Installation 3
1.1 ViaPython Package Index e 3
1.2 ViaGitorDownload e e e e e 3
2 Tokens 5
2.1 TOKEN.DY . . o o i e e e e e e e e e e e e 5
3 Staging Modules 7
3.1 GRID_LRT.Staging.stmliSt o i et e e e e e e e e e e e 7
3.2 GRID_LRT.Staging.stage_all LTA 8
3.3 GRID_LRT.Staging.state_all e e e e 9
3.4 GRID_LRT.Staging.stager_acCess « « ¢ v v v v v v v e et e e e e e e e e 10
4 Sandbox Module 13
4.1 GRID_LRT.sandboX e e e e e e 13
5 Error Codes 17
6 Indices and tables 19
Python Module Index 21

GRID_LRT Documentation, Release 0.2.0

This package is built by Alexandar Mechev and the LOFAR e-infra group at Leiden University with the support of
SURFsara. The goals of this package is to enable High Throughput processing of LOFAR data on the Dutch GRID
infrastructure. We do this by making a set of tools designed to wrap around several different LOFAR processing
strategies. These tools are responsible for staging data at the LOFAR Long Term Archives, creating and launching
GRID jobs, as well as managing intermediate data on the GRID storage.

Contents: 1

GRID_LRT Documentation, Release 0.2.0

2 Contents:

CHAPTER 1

Installation

1.1 Via Python Package Index

Install the package (or add it to your requirements. txt file):

|

1.2 Via Git or Download

Download the latest version from https://www.github.com/apmechev/GRID_LRT. To install, use

In the case that you do not have access to the python system libraries, you can use ——prefix= to specify install
folder. For example if you want to install it into a folder you own (say /home/apmechev/software/python) use the
following command:

python setup.py build
python setup.py install —--prefix=${HOME}/software/python

Note: NOTE: you need to have your pythonpath containing
“${HOME }/software/python/lib/python[2.612.713.4]/site_packages”

and that folder needs to exist beforehand or setuptools will complain

GRID_LRT Documentation, Release 0.2.0

4 Chapter 1. Installation

CHAPTER 2

Tokens

The GRID_LRT.Token module is responsible for interactions with CouchDB using the PiCaS token framework. It
contains a Token_Handler object which manages a single _design document on CouchDB, intended for a set of jobs
that are logically linked together. In the LOFAR Surveys case, this holds the jobs of a single Observation. Additionally
a Token_Set object can create batch tokens, upload attachments to them in bulk and change Token fields in bulk as
well. This module is used in combination with the srmlist class to automatically create sets of jobs with N files each.

2.1 Token.py

Location: GRID_LRT/Token.py Imports:

from GRID_LRT.Token import
from GRID_LRT.Token import

2.1.1 TokenHandler

2.1.2 TokenSet

GRID_LRT Documentation, Release 0.2.0

6 Chapter 2. Tokens

CHAPTER 3

Staging Modules

These modules are located in GRID_LRT.Staging and can be used to batch stage or check the status of the files on the
GRID Storage.

3.1 GRID_LRT.Staging.srmlist

GRID_LRT.Staging.srmlist.count_files_uberftp (directory)
GRID_LRT.Staging.srmlist.make_srmlist_from_gsiftpdir (gsifipdir)

GRID_LRT.Staging.srmlist.slice_dicts (srmdict, slice_size=10)
Returns a dict of lists that hold 10 SBNs (by default). Missing Subbands are treated as empty spaces, if you
miss SB009, the list will include 9 items from SB00O0 to SB00S8, and next will start at SBO10

class GRID_LRT.Staging.srmlist.srmlist (checkOBSID=True, link=None)
Bases: 1ist

The srmlist class is an extension of Python lists that can hold a list of srm links to data on GRID Storage (LOFAR
Archive, Intermediate Storage, etc).

In addition to the regular list capabilities, it also has internal checks for the location and the OBSID of the data.
When a new item is appended, these checks are done automatically. Checking OBSID is an optional argument
set to True by default.

__init_ (checkOBSID=True, link=None)
X.__init__(...) initializes x; see help(type(x)) for signature

append (item)
L.append(object) — append object to end

check_1location (item)
check_obsid (item)
check_str_ location (item)

count (value) — integer — return number of occurrences of value

https://docs.python.org/3/library/stdtypes.html#list

GRID_LRT Documentation, Release 0.2.0

extend ()
L.extend(iterable) — extend list by appending elements from the iterable

gfal links()
Returns a generator that can be used to generate links that can be staged/stated with gfal

gfal_replace (item)
For each item, it creates a valid link for the gfal staging scripts

gsi_links()
Returns a generator which can be iterated over, this generator will return a set of gsiftp:// links which can
be used with globus-url-copy and uberftp

gsi_replace (item)

http_links ()
Returns a generator that can be used to generate http:// links that can be downloaded using wget

http_replace (item)

index (value[, start[, stop]]) — integer — return first index of value.
Raises ValueError if the value is not present.

insert ()
L.insert(index, object) — insert object before index

pop ([index]) — item — remove and return item at index (default last).
Raises IndexError if list is empty or index is out of range.

remove ()
L.remove(value) — remove first occurrence of value. Raises ValueError if the value is not present.

reverse ()
L.reverse() —reverse IN PLACE

sbn_dict (pref="SB’, suff="_")
Returns a generator that creates a pair of SBN and link. Can be used to create dictionaries

sort ()
L.sort(cmp=None, key=None, reverse=False) — stable sort IN PLACE; cmp(X, y) ->-1,0, 1

srm_replace (item)
stringify item (item)

trim_spaces (item)
Sometimes there are two fields in the incoming list. Only take the first as long as it’s fromatted properly

3.2 GRID_LRT.Staging.stage_all_LTA

GRID_LRT.Staging.stage_all_LTA.get_stage_status (stageid)
GRID_LRT.Staging.stage_all_LTA.location (filename)
GRID_LRT.Staging.stage_all_LTA.main (filename, test=False)
GRID_LRT.Staging.stage_all_LTA.process (urls, repl_string, match, test=False)

GRID_LRT.Staging.stage_all_LTA.process_surl_line (line)
Used to drop empty lines and to take the first argument of the srmfile (the srm:// link)

GRID_LRT.Staging.stage_all_LTA.replace (file_loc)

8 Chapter 3. Staging Modules

http://

GRID_LRT Documentation, Release 0.2.0

GRID_LRT.Staging.stage_all_LTA.return_srmlist (filename)
GRID_LRT.Staging.stage_all_LTA.state_dict (srm_dict)

GRID_LRT.Staging.stage_all_ LTA.strip (item)

3.3 GRID_LRT.Staging.state_all

Python module to <check the state of files wusing gfal and return their locality #
author: Ron
Trompert <ron.trompert@surfsara.nl> — SURFsara # # helpdesk: Grid Services <grid.support@surfsara.nl> —
SURFsara # # # # usage: python state.py # # description: # # Display the status of each file listed in “files”. The
paths # # should have the ‘/pnfs/...” format. Script output: # # ONLINE: means that the file is only on disk # #
NEARLINE: means that the file in only on tape # # ONLINE_AND_NEARLINE: means that the file is on disk # #
and tape # # #

GRID_LRT.Staging.state_all.check_status (surl_link, verbose=True)
Obtain the status of a file from the given surl.

Args:
param surl the SURL pointing to the file.
type surl str
parame verbose print the status to the terminal.
type verbose bool
Returns:

(filename, status) a tuple containing the file and status as stored in the ‘user.status’ attribute.

GRID_LRT.Staging.state_all.check_status_file (surl_list)
Unimplemented task

GRID_LRT.Staging.state_all.load_file_into_srmlist (filename)
Helper function that loads a file into an srmlist object (will be added to the actual srmlist class later)

GRID_LRT.Staging.state_all.main (filename, verbose=True)
Main function that takes in a file name and returns a list of tuples of filenames and staging statuses. The input
file can be both srm:// and gsiftp:// links.

Args:
param filename The filename holding the links whose have to be checked
type filename str
param verbose A toggle to turn off printing out the status of each file.
True by default will print everything out :type verbose: bool
Returns:
ret results A list of tuples containing the file_name and the State

Usage:

GRID_LRT.Staging

(continues on next page)

3.3. GRID_LRT.Staging.state_all 9

mailto:ron.trompert@surfsara.nl
mailto:grid.support@surfsara.nl

GRID_LRT Documentation, Release 0.2.0

(continued from previous page)

GRID_LRT.Staging.state_all.percent_staged (results)
Takes list of tuples of (srm, status) and counts the percentage of files that are staged (0->1) and retunrs this
percentage as float

Usage:

GRID_LRT.Staging

3.4 GRID_LRT.Staging.stager_access

It uses an xmlrpc proxy to talk and authenticate to the remote service. Your account credentials will be read from the
awlofar catalog Environment.cfg, if present or can be provided in a .stagingrc file in your home directory.

!'Please do not talk directly to the xmlrpc interface, but use this module to access the provided functionality. !! This
is to ensure that when we change the remote interface, your scripts don’t break and you will only have to upgrade this
module.

GRID_LRT.Staging.stager_access.stage (surls)
Stage list of SURLS or a string holding a single SURL

Parameters surls (either a l1ist() or a str()) — Either a list of strings or a string
holding a single surl to stage

Returns An integer which is used to refer to the stagig request when polling
the API for a staging status

GRID_LRT.Staging.stager_access.get_status (stageid)
Get status of request with given ID

Args:
param stageid The id of the staging request which you want the status of
type stageid int
Returns:
status A string describing the staging status: ‘new’, ‘scheduled’,
‘in progress’ or ‘success’

GRID_LRT.Staging.stager_access.get_surls_online (stageid)
Get a list of all files that are already online for a running request with given ID

GRID_LRT.Staging.stager_access.get_srm_ token (stageid)
Get the SRM request token for direct interaction with the SRM site via Grid/SRM tools

GRID_LRT.Staging.stager_access.reschedule (stageid)
Reschedule a request with a given ID, e.g. after it was put on hold due to maintenance

10 Chapter 3. Staging Modules

GRID_LRT Documentation, Release 0.2.0

GRID_LRT.Staging.stager_access.get_progress ()
Get a detailed list of all running requests and their current progress. As a normal user, this only returns your
own requests.

GRID_LRT.Staging.stager_access.get_storage_info ()
Get storage information of the different LTA sites, e.g. to check available disk pool space. Requires support role
permissions.

3.4. GRID_LRT.Staging.stager_access 11

GRID_LRT Documentation, Release 0.2.0

12 Chapter 3. Staging Modules

CHAPTER 4

Sandbox Module

The Sandbox module creates a tar archive of the scripts to be distributed to the worker nodes at the launch of a
PiCaS job. The location of the sandbox is stored in the PiCaS token and upon launch, it is downloaded and extracted.
The sandbox is created from a configuration file which defines its name, location scrts repository and any additional
processing scripts, such as prefactor.

4.1 GRID_LRT.sandbox

Sandbox building and uploading module

class GRID_LRT.sandbox.Sandbox (cfgfile=None, **kwargs)
Bases: object

A set of functions to create a sandbox from a configuration file. Uploads to grid storage and ssh-copies to a
remote ftp server as a fallback location.

Usage with a .cfg file:

from GRID_LRT import

This will build the sandbox according to the recipe in bash_file.cfg and upload it to grid storage

__init__ (cfgfile=None, **kwargs)
Creates a ‘sandbox’ object which builds and uploads the sanbox. An optional argument is the configuration
file which is a yaml file specifying the repositories to include, the type of the sanbox, and its name.

Example configuration files are included in GRID_LRT/data/config.
Parameters cfgfile (str)— The name of the configuration file to build a sandbox from

build_sandbox (sbx_config)
A comprehensive function that builds a Sandbox from a configuration file and creates a sandbox tarfile.

13

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

GRID_LRT Documentation, Release 0.2.0

check_token ()
This function does the necessary linkage between the sandbox and token most importantly it saves the
tokvar.cfg file in the sbx, but also checks if the token variables are all existing. If so, tokvar is created and
put inside the SBX

cleanup ()

copy_base_scripts (basetype=None)
Backwards compatible

copy_git_scripts ()
Reads the location of the sandbox base scripts repository and clones in the current directory. Checks out
the appropriate branch

create_sbx_folder ()
Makes an empty sandbox folder or removes previous one

delete_gsi_sandbox (sbixfile)

delete_sbx folder ()
Removes the sandbox folder and subfolders

enter_sbx_folder (directory=None)
Changes directory to the (temporary) sandbox folder)

get_result_loc()

load_git_scripts ()
Loads the git scripts into the sandbox folder. Top dir names are defined in the yaml, not by the git name

make_tokvar dict ()

parseconfig (yamlfile)
Helper function to parse the sandbox configuration options from the yaml .cfg file. Loads the options in a
dictionary stored in an internal variable

Parameters yamlfile (st r)— The name of the sandbox configuration file
sandbox_exists (sbifile)

upload_gsi_sbx (loc=None, upload_name=None)
Uploads the sandbox to the relative folders

upload_sandbox (upload_name=None)

upload_sbx (loc=None, upload_name=None)
Uploads sandbox to all possible locations

upload_ssh_sandbox (upload_name=None)
zip_sbx (zipname=None)

class GRID_LRT.sandbox.UnauthorizedSandbox (*args, **kw)
Bases: GRID LRT.sandbox.Sandbox

__init__ (*args, **kw)
Creates a ‘sandbox’ object which builds and uploads the sanbox. An optional argument is the configuration
file which is a yaml file specifying the repositories to include, the type of the sanbox, and its name.

Example configuration files are included in GRID_LRT/data/config.
Parameters cfgfile (str)— The name of the configuration file to build a sandbox from

build_sandbox (sbx_config)
A comprehensive function that builds a Sandbox from a configuration file and creates a sandbox tarfile.

14 Chapter 4. Sandbox Module

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GRID_LRT Documentation, Release 0.2.0

check_token ()
This function does the necessary linkage between the sandbox and token most importantly it saves the
tokvar.cfg file in the sbx, but also checks if the token variables are all existing. If so, tokvar is created and
put inside the SBX

cleanup ()

copy_base_scripts (basetype=None)
Backwards compatible

copy_git_scripts ()
Reads the location of the sandbox base scripts repository and clones in the current directory. Checks out
the appropriate branch

create_sbx_folder ()
Makes an empty sandbox folder or removes previous one

delete_gsi_sandbox (sbixfile)

delete_sbx folder ()
Removes the sandbox folder and subfolders

enter_sbx_folder (directory=None)
Changes directory to the (temporary) sandbox folder)

get_result_loc()

load_git_scripts ()
Loads the git scripts into the sandbox folder. Top dir names are defined in the yaml, not by the git name

make_tokvar dict ()

parseconfig (yamlfile)
Helper function to parse the sandbox configuration options from the yaml .cfg file. Loads the options in a
dictionary stored in an internal variable

Parameters yamlfile (st r)— The name of the sandbox configuration file
sandbox_exists (sbifile)

upload_gsi_sbx (loc=None, upload_name=None)
Uploads the sandbox to the relative folders

upload_sandbox (upload_name=None)

upload_sbx (loc=None, upload_name=None)
Uploads sandbox to all possible locations

upload_ssh_sandbox (upload_name=None)

zip_sbx (zipname=None)

4.1. GRID_LRT.sandbox 15

https://docs.python.org/3/library/stdtypes.html#str

GRID_LRT Documentation, Release 0.2.0

16 Chapter 4. Sandbox Module

CHAPTER B

Error Codes

Here are a list of errors that the GRID_Sandbox or GRID_Launcher return when processing data on a worker node.
The error code is saved in the ‘output’ field of the PiCaS token.

-2 -> Sandbox downloaded but size OkB
-1->

0 -> RUN OK!

1 -> One of Token=${TOKEN}, Picas_usr=${PICAS_USR}, Picas_db=${PICAS_DB} not set
2->

3 -> Parset doesn’t exist

4->

5->

6 ->

7->

8->

9 ->

10 -> Softdrive not found

11 -> LOFAR env cannot be found by GRID_PiCaS_Launcher
12 -> No init_env script

13 >

14 >

15>

16 ->

17 >

18 ->

19 >

20 -> No download File Present

21 -> Download fails

22 -> Data not staged

17

GRID_LRT Documentation, Release 0.2.0

23 -> pref_call solutions do not download/extract
24 ->

25 >

26 >

27 ->

28 ->

29 ->

30 -> No files in uploads folder

31 -> Upload to gsiftp fails

32 -> Upload to gsiftp fails: Pools full!

33 -> Upload to gsiftp fails: File already exists

34 -> Upload to gsiftp fails: File cannot be found (Parent folder not exist?)
35 ->

36 >

37 >

90 -> genericpipeline.py stdout file cannot be found!
91 ->

92 ->

93 ->

94 ->

95 ->

96 -> Files not downloaded fully

97 -> dppp memory error in prefactor

98 -> Bad_alloc error in prefactor

99 -> Generic Prefactor Failure

18

Chapter 5. Error Codes

CHAPTER O

Indices and tables

* genindex
* modindex

e search

19

GRID_LRT Documentation, Release 0.2.0

20 Chapter 6. Indices and tables

Python Module Index

g

GRID_LRT.
GRID_LRT.

GRID_LRT

GRID_LRT

sandbox, 13
Staging.srmlist, 7

.Staging.stage_all_LTA,S8
GRID_LRT.

Staging.stager_access, 10

.Staging.state_all,9

21

GRID_LRT Documentation, Release 0.2.0

22 Python Module Index

Index

Symbols

__init__() (GRID_LRT.Staging.srmlist.srmlist method), 7
__init__() (GRID_LRT.sandbox.Sandbox method), 13

copy_git_scripts() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

count() (GRID_LRT.Staging.srmlist.srmlist method), 7

count_files_uberftp() (in module

init () (GRID_LRT.sandbox.UnauthorizedSandbox))
method), 14 GRID_LRT.Staging.srmlist), 7
create_sbx_folder() (GRID_LRT.sandbox.Sandbox
A method), 14
append() (GRID_LRT. Staging.srmlist.srmlist method), 7 create_sb)i; i(t)lll(ie(:ir)() 1(SGRID_LRT.sandbox.UnauthorlzedSandbox
B D
build_sandbox() (GRID_LRT.sandbox.Sandbox method), delete_gsi_sandbox() (GRID_LRT.sandbox.Sandbox
. 13 . method), 14
build_sandbox() (GRID—LRT'Sandbox'Unamhorlzedsandboéelete_gsi_sandbox() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 14 method), 15
delete_sbx_folder() (GRID_LRT.sandbox.Sandbox
C
. . . . method), 14
check_location() (GRID_LRT.Staging.srmlist.srmlist delete_sbx_folder() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 7 method), 15
check_obsid() (GRID_LRT.Staging.srmlist.srmlist
method), 7 E
9 . method), 14
check_status_file() (in module enter_sbx_folder() (GRID_LRT.sandbox.UnauthorizedSandbox
GRID_LRT.Staging.state_all), 9 method), 15
check_str_location() (GRID_LRT.Staging.srmlist.srmlist extend() (GRID_LRT.Staging.srmlist.srmlist method), 7
method), 7
check_token() (GRID_LRT.sandbox.Sandbox method), G
13 module

check_token() (GRID_LRT.sandbox.UnauthorizedSandbox

method), 14

get_progress() (in
GRID_LRT.Staging.stager_access), 10
get_result_loc() (GRID_LRT.sandbox.Sandbox method),

cleanup() (GRID_LRT.sandbox.Sandbox method), 14 14

cleanup() (GRID_LRT.sandbox.UnauthorizedSandbox get_result_loc() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15 method), 15

copy_base_scripts() (GRID_LRT.sandbox.Sandbox get srm_token() (in module
method), 14 GRID_LRT.Staging.stager_access), 10

copy_base_scripts() (GRID_LRT.sandbox.UnauthorizedSangpp)gtage status() (in module
method), 15 GRID_LRT.Staging.stage_all_LTA), 8

copy_git_scripts() (GRID_LRT.sandbox.Sandbox get_status() (in module
method), 14 GRID_LRT.Staging.stager_access), 10

23

GRID_LRT Documentation, Release 0.2.0

get_storage_info() (in module
GRID_LRT.Staging.stager_access), 11
get_surls_online() (in module

GRID_LRT.Staging.stager_access), 10
gfal_links() (GRID_LRT.Staging.srmlist.srmlist method),
8

gfal_replace()
method), 8
GRID_LRT.sandbox (module), 13
GRID_LRT.Staging.srmlist (module), 7
GRID_LRT.Staging.stage_all_LTA (module), 8
GRID_LRT.Staging.stager_access (module), 10
GRID_LRT.Staging.state_all (module), 9
gsi_links() (GRID_LRT.Staging.srmlist.srmlist method),

(GRID_LRT.Staging.srmlist.srmlist

8

gsi_replace() (GRID_LRT.Staging.srmlist.srmlist
method), 8

H

http_links() (GRID_LRT.Staging.srmlist.srmlist method),
8

http_replace() (GRID_LRT.Staging.srmlist.srmlist
method), 8

index() (GRID_LRT.Staging.srmlist.srmlist method), 8
insert() (GRID_LRT.Staging.srmlist.srmlist method), 8

L

load_file_into_srmlist() (in
GRID_LRT.Staging.state_all), 9

load_git_scripts() (GRID_LRT.sandbox.Sandbox
method), 14

module

load_git_scripts() (GRID_LRT.sandbox.UnauthorizedSandbox

method), 15
location() (in module GRID_LRT.Staging.stage_all_LTA),
8

M

main() (in module GRID_LRT.Staging.stage_all_LTA), 8

main() (in module GRID_LRT.Staging.state_all), 9

make_srmlist_from_gsiftpdir() (in module
GRID_LRT.Staging.srmlist), 7

make_tokvar_dict() (GRID_LRT.sandbox.Sandbox
method), 14

make_tokvar_dict() (GRID_LRT.sandbox.UnauthorizedSan

method), 15

P

parseconfig() (GRID_LRT.sandbox.Sandbox method), 14

parseconfig() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

percent_staged() (in
GRID_LRT.Staging.state_all), 10

module

pop() (GRID_LRT.Staging.srmlist.srmlist method), 8

process() (in module GRID_LRT.Staging.stage_all_LTA),
8

process_surl_line() (in
GRID_LRT.Staging.stage_all_LTA), 8

module

R

remove() (GRID_LRT.Staging.srmlist.srmlist method), 8

replace() (in module GRID_LRT.Staging.stage_all_LTA),
8

reschedule() (in
GRID_LRT.Staging.stager_access), 10

return_srmlist() (in
GRID_LRT.Staging.stage_all_LTA), 8

reverse() (GRID_LRT.Staging.srmlist.srmlist method), 8

S

Sandbox (class in GRID_LRT.sandbox), 13

sandbox_exists() (GRID_LRT.sandbox.Sandbox
method), 14

sandbox_exists() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

sbn_dict() (GRID_LRT.Staging.srmlist.srmlist method),
8

slice_dicts() (in module GRID_LRT.Staging.srmlist), 7

sort() (GRID_LRT.Staging.srmlist.srmlist method), 8

srm_replace() (GRID_LRT.Staging.srmlist.srmlist
method), 8

srmlist (class in GRID_LRT.Staging.srmlist), 7

stage() (in module GRID_LRT.Staging.stager_access), 10

state_dict() (in module
GRID_LRT.Staging.stage_all_LTA), 9

stringify_item() (GRID_LRT.Staging.srmlist.srmlist

method), 8

strip() (in module GRID_LRT.Staging.stage_all_LTA), 9

module

module

trim_spaces() (GRID_LRT.Staging.srmlist.srmlist

method), 8

U

UnauthorizedSandbox (class in GRID_LRT.sandbox), 14
upload_gsi_sbx() (GRID_LRT.sandbox.Sandbox

method), 14
load_gsi_sbx() (GRID_LRT.sandbox.UnauthorizedSandbox

Jbox
method), 15

upload_sandbox() (GRID_LRT.sandbox.Sandbox
method), 14

upload_sandbox() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

upload_sbx() (GRID_LRT.sandbox.Sandbox method), 14
upload_sbx() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

24

Index

GRID_LRT Documentation, Release 0.2.0

upload_ssh_sandbox() (GRID_LRT.sandbox.Sandbox
method), 14

upload_ssh_sandbox() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

Z

zip_sbx() (GRID_LRT.sandbox.Sandbox method), 14
zip_sbx() (GRID_LRT.sandbox.UnauthorizedSandbox
method), 15

Index 25

	Installation
	Via Python Package Index
	Via Git or Download

	Tokens
	Token.py

	Staging Modules
	GRID_LRT.Staging.srmlist
	GRID_LRT.Staging.stage_all_LTA
	GRID_LRT.Staging.state_all
	GRID_LRT.Staging.stager_access

	Sandbox Module
	GRID_LRT.sandbox

	Error Codes
	Indices and tables
	Python Module Index

